Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Iron Deficiency Response of Corynebacterium glutamicum and a Link to Thiamine Biosynthesis.

Identifieur interne : 000026 ( Main/Exploration ); précédent : 000025; suivant : 000027

The Iron Deficiency Response of Corynebacterium glutamicum and a Link to Thiamine Biosynthesis.

Auteurs : Andreas Küberl [Allemagne] ; Aliye Mengus-Kaya [Allemagne] ; Tino Polen [Allemagne] ; Michael Bott [Allemagne]

Source :

RBID : pubmed:32144105

Descripteurs français

English descriptors

Abstract

The response to iron limitation of the Gram-positive soil bacterium Corynebacterium glutamicum was analyzed with respect to secreted metabolites, the transcriptome, and the proteome. During growth in glucose minimal medium, iron limitation caused a shift from lactate to pyruvate as the major secreted organic acid complemented by l-alanine and 2-oxoglutarate. Transcriptome and proteome analyses revealed that a pronounced iron starvation response governed by the transcriptional regulators DtxR and RipA was detectable in the late, but not in the early, exponential-growth phase. A link between iron starvation and thiamine pyrophosphate (TPP) biosynthesis was uncovered by the strong upregulation of thiC As phosphomethylpyrimidine synthase (ThiC) contains an iron-sulfur cluster, limiting activities of the TPP-dependent pyruvate-2-oxoglutarate dehydrogenase supercomplex probably cause the excretion of pyruvate and 2-oxoglutarate. In line with this explanation, thiamine supplementation could strongly diminish the secretion of these acids. The upregulation of thiC and other genes involved in thiamine biosynthesis and transport is presumably due to TPP riboswitches present at the 5' end of the corresponding operons. The results obtained in this study provide new insights into iron homeostasis in C. glutamicum and demonstrate that the metabolic consequences of iron limitation can be due to the iron dependency of coenzyme biosynthesis.IMPORTANCE Iron is an essential element for most organisms but causes problems due to poor solubility under oxic conditions and due to toxicity by catalyzing the formation of reactive oxygen species (ROS). Therefore, bacteria have evolved complex regulatory networks for iron homeostasis aiming at a sufficient iron supply while minimizing ROS formation. In our study, the responses of the actinobacterium Corynebacterium glutamicum to iron limitation were analyzed, resulting in a detailed view on the processes involved in iron homeostasis in this model organism. In particular, we provide evidence that iron limitation causes TPP deficiency, presumably due to insufficient activity of the iron-dependent phosphomethylpyrimidine synthase (ThiC). TPP deficiency was deduced from the upregulation of genes controlled by a TPP riboswitch and secretion of metabolites caused by insufficient activity of the TPP-dependent enzymes pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase. To our knowledge, the link between iron starvation and thiamine synthesis has not been elaborated previously.

DOI: 10.1128/AEM.00065-20
PubMed: 32144105
PubMed Central: PMC7205493


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Iron Deficiency Response of Corynebacterium glutamicum and a Link to Thiamine Biosynthesis.</title>
<author>
<name sortKey="Kuberl, Andreas" sort="Kuberl, Andreas" uniqKey="Kuberl A" first="Andreas" last="Küberl">Andreas Küberl</name>
<affiliation wicri:level="3">
<nlm:affiliation>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mengus Kaya, Aliye" sort="Mengus Kaya, Aliye" uniqKey="Mengus Kaya A" first="Aliye" last="Mengus-Kaya">Aliye Mengus-Kaya</name>
<affiliation wicri:level="3">
<nlm:affiliation>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Polen, Tino" sort="Polen, Tino" uniqKey="Polen T" first="Tino" last="Polen">Tino Polen</name>
<affiliation wicri:level="3">
<nlm:affiliation>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bott, Michael" sort="Bott, Michael" uniqKey="Bott M" first="Michael" last="Bott">Michael Bott</name>
<affiliation wicri:level="3">
<nlm:affiliation>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany m.bott@fz-juelich.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32144105</idno>
<idno type="pmid">32144105</idno>
<idno type="doi">10.1128/AEM.00065-20</idno>
<idno type="pmc">PMC7205493</idno>
<idno type="wicri:Area/Main/Corpus">000135</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000135</idno>
<idno type="wicri:Area/Main/Curation">000135</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000135</idno>
<idno type="wicri:Area/Main/Exploration">000135</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Iron Deficiency Response of Corynebacterium glutamicum and a Link to Thiamine Biosynthesis.</title>
<author>
<name sortKey="Kuberl, Andreas" sort="Kuberl, Andreas" uniqKey="Kuberl A" first="Andreas" last="Küberl">Andreas Küberl</name>
<affiliation wicri:level="3">
<nlm:affiliation>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mengus Kaya, Aliye" sort="Mengus Kaya, Aliye" uniqKey="Mengus Kaya A" first="Aliye" last="Mengus-Kaya">Aliye Mengus-Kaya</name>
<affiliation wicri:level="3">
<nlm:affiliation>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Polen, Tino" sort="Polen, Tino" uniqKey="Polen T" first="Tino" last="Polen">Tino Polen</name>
<affiliation wicri:level="3">
<nlm:affiliation>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bott, Michael" sort="Bott, Michael" uniqKey="Bott M" first="Michael" last="Bott">Michael Bott</name>
<affiliation wicri:level="3">
<nlm:affiliation>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany m.bott@fz-juelich.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (metabolism)</term>
<term>Corynebacterium glutamicum (growth & development)</term>
<term>Corynebacterium glutamicum (physiology)</term>
<term>Iron (deficiency)</term>
<term>Proteome (MeSH)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Thiamine (biosynthesis)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>Corynebacterium glutamicum (croissance et développement)</term>
<term>Corynebacterium glutamicum (physiologie)</term>
<term>Fer (déficit)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéome (MeSH)</term>
<term>Thiamine (biosynthèse)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Thiamine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Iron</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Thiamine</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Corynebacterium glutamicum</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Fer</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Corynebacterium glutamicum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Corynebacterium glutamicum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Corynebacterium glutamicum</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Proteome</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Protéome</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The response to iron limitation of the Gram-positive soil bacterium
<i>Corynebacterium glutamicum</i>
was analyzed with respect to secreted metabolites, the transcriptome, and the proteome. During growth in glucose minimal medium, iron limitation caused a shift from lactate to pyruvate as the major secreted organic acid complemented by l-alanine and 2-oxoglutarate. Transcriptome and proteome analyses revealed that a pronounced iron starvation response governed by the transcriptional regulators DtxR and RipA was detectable in the late, but not in the early, exponential-growth phase. A link between iron starvation and thiamine pyrophosphate (TPP) biosynthesis was uncovered by the strong upregulation of
<i>thiC</i>
As phosphomethylpyrimidine synthase (ThiC) contains an iron-sulfur cluster, limiting activities of the TPP-dependent pyruvate-2-oxoglutarate dehydrogenase supercomplex probably cause the excretion of pyruvate and 2-oxoglutarate. In line with this explanation, thiamine supplementation could strongly diminish the secretion of these acids. The upregulation of
<i>thiC</i>
and other genes involved in thiamine biosynthesis and transport is presumably due to TPP riboswitches present at the 5' end of the corresponding operons. The results obtained in this study provide new insights into iron homeostasis in
<i>C. glutamicum</i>
and demonstrate that the metabolic consequences of iron limitation can be due to the iron dependency of coenzyme biosynthesis.
<b>IMPORTANCE</b>
Iron is an essential element for most organisms but causes problems due to poor solubility under oxic conditions and due to toxicity by catalyzing the formation of reactive oxygen species (ROS). Therefore, bacteria have evolved complex regulatory networks for iron homeostasis aiming at a sufficient iron supply while minimizing ROS formation. In our study, the responses of the actinobacterium
<i>Corynebacterium glutamicum</i>
to iron limitation were analyzed, resulting in a detailed view on the processes involved in iron homeostasis in this model organism. In particular, we provide evidence that iron limitation causes TPP deficiency, presumably due to insufficient activity of the iron-dependent phosphomethylpyrimidine synthase (ThiC). TPP deficiency was deduced from the upregulation of genes controlled by a TPP riboswitch and secretion of metabolites caused by insufficient activity of the TPP-dependent enzymes pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase. To our knowledge, the link between iron starvation and thiamine synthesis has not been elaborated previously.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32144105</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>86</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>The Iron Deficiency Response of Corynebacterium glutamicum and a Link to Thiamine Biosynthesis.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00065-20</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.00065-20</ELocationID>
<Abstract>
<AbstractText>The response to iron limitation of the Gram-positive soil bacterium
<i>Corynebacterium glutamicum</i>
was analyzed with respect to secreted metabolites, the transcriptome, and the proteome. During growth in glucose minimal medium, iron limitation caused a shift from lactate to pyruvate as the major secreted organic acid complemented by l-alanine and 2-oxoglutarate. Transcriptome and proteome analyses revealed that a pronounced iron starvation response governed by the transcriptional regulators DtxR and RipA was detectable in the late, but not in the early, exponential-growth phase. A link between iron starvation and thiamine pyrophosphate (TPP) biosynthesis was uncovered by the strong upregulation of
<i>thiC</i>
As phosphomethylpyrimidine synthase (ThiC) contains an iron-sulfur cluster, limiting activities of the TPP-dependent pyruvate-2-oxoglutarate dehydrogenase supercomplex probably cause the excretion of pyruvate and 2-oxoglutarate. In line with this explanation, thiamine supplementation could strongly diminish the secretion of these acids. The upregulation of
<i>thiC</i>
and other genes involved in thiamine biosynthesis and transport is presumably due to TPP riboswitches present at the 5' end of the corresponding operons. The results obtained in this study provide new insights into iron homeostasis in
<i>C. glutamicum</i>
and demonstrate that the metabolic consequences of iron limitation can be due to the iron dependency of coenzyme biosynthesis.
<b>IMPORTANCE</b>
Iron is an essential element for most organisms but causes problems due to poor solubility under oxic conditions and due to toxicity by catalyzing the formation of reactive oxygen species (ROS). Therefore, bacteria have evolved complex regulatory networks for iron homeostasis aiming at a sufficient iron supply while minimizing ROS formation. In our study, the responses of the actinobacterium
<i>Corynebacterium glutamicum</i>
to iron limitation were analyzed, resulting in a detailed view on the processes involved in iron homeostasis in this model organism. In particular, we provide evidence that iron limitation causes TPP deficiency, presumably due to insufficient activity of the iron-dependent phosphomethylpyrimidine synthase (ThiC). TPP deficiency was deduced from the upregulation of genes controlled by a TPP riboswitch and secretion of metabolites caused by insufficient activity of the TPP-dependent enzymes pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase. To our knowledge, the link between iron starvation and thiamine synthesis has not been elaborated previously.</AbstractText>
<CopyrightInformation>Copyright © 2020 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Küberl</LastName>
<ForeName>Andreas</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0001-9105-2452</Identifier>
<AffiliationInfo>
<Affiliation>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mengus-Kaya</LastName>
<ForeName>Aliye</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-9699-3048</Identifier>
<AffiliationInfo>
<Affiliation>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Polen</LastName>
<ForeName>Tino</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0002-0065-3007</Identifier>
<AffiliationInfo>
<Affiliation>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bott</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-4701-8254</Identifier>
<AffiliationInfo>
<Affiliation>IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany m.bott@fz-juelich.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>X66NSO3N35</RegistryNumber>
<NameOfSubstance UI="D013831">Thiamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048230" MajorTopicYN="N">Corynebacterium glutamicum</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="Y">deficiency</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013831" MajorTopicYN="N">Thiamine</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Corynebacterium glutamicum </Keyword>
<Keyword MajorTopicYN="Y">iron deficiency</Keyword>
<Keyword MajorTopicYN="Y">proteome</Keyword>
<Keyword MajorTopicYN="Y">thiamine biosynthesis</Keyword>
<Keyword MajorTopicYN="Y">transcriptome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32144105</ArticleId>
<ArticleId IdType="pii">AEM.00065-20</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.00065-20</ArticleId>
<ArticleId IdType="pmc">PMC7205493</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2019 Aug 20;20(1):663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31429699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Feb;174(4):1378-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1531225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2001 Apr;175(4):282-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11382224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2009 Feb 5;139(3):214-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19124047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2006 Aug;152(Pt 8):2345-2353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16849799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2014 Jun;14(12):1531-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24737727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Nov 14;322(5904):1104-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2006 Feb 09;7:21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2012 May 31;159(1-2):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21933687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2014 Mar;22:40-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24333966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Dec 17;14:888</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24341750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2003 Sep 4;104(1-3):129-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12948635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jan;67(2):305-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18047570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2006 Jul;14(7):320-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16759864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2014 Mar 28;446(1):286-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24582752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2008 Dec;4(12):758-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18953358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Jun;92(6):1326-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24779520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9736-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11470904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Sep 2;47(35):9054-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18686975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2010 Jan 29;10:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20113483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Mar;193(5):1212-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jul 30;394(6692):502-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9697776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Jun;11(6):O111.016717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22261725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1996 Dec;142 ( Pt 12):3347-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9004499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2011 Nov;157(Pt 11):3221-3231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21873409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Apr;73(7):2079-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2011 Jul 10;154(2-3):126-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20620178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Dec 21;10:621</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20025733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Apr;188(8):2907-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16585752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Chem Biol. 2016 Jul 21;23(7):827-836</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27447050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4620-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11917098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6897-6902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30886102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 9;280(49):40500-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16179344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2003 Jun;27(2-3):215-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12829269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Aug;93(4):609-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25040830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2013 Dec;280(24):6412-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24004353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2010 Oct;192(19):5203-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20675489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 7;285(19):14823-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20231268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Feb;187(3):862-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2006 Oct;4(10):752-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):4806-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27078093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Oct 31;419(6910):952-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Feb 09;9:183</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29479345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Feb 7;278(6):4339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Oct 19;14:714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24138339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMB Rep. 2012 Apr;45(4):239-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22531134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2007 Sep;15(9):417-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17764950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1817(2):370-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22050934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Dec 13;277(50):48949-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2000 May-Jun;173(5-6):390-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10896219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Aug;193(16):4123-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Jan;1843(1):103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23557784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 May;194(10):2594-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22389480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2014 Aug;196(15):2748-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24837288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 May 5;281(18):12300-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16522631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2011 Jun;3(6):540-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21566833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 2010;18(3):162-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20530967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 Jul;190(14):5111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2013 Jan;159(Pt 1):12-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23103979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Sep;187(17):6005-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16109942</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Cologne</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Juliers</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Kuberl, Andreas" sort="Kuberl, Andreas" uniqKey="Kuberl A" first="Andreas" last="Küberl">Andreas Küberl</name>
</region>
<name sortKey="Bott, Michael" sort="Bott, Michael" uniqKey="Bott M" first="Michael" last="Bott">Michael Bott</name>
<name sortKey="Mengus Kaya, Aliye" sort="Mengus Kaya, Aliye" uniqKey="Mengus Kaya A" first="Aliye" last="Mengus-Kaya">Aliye Mengus-Kaya</name>
<name sortKey="Polen, Tino" sort="Polen, Tino" uniqKey="Polen T" first="Tino" last="Polen">Tino Polen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000026 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000026 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32144105
   |texte=   The Iron Deficiency Response of Corynebacterium glutamicum and a Link to Thiamine Biosynthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32144105" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020